近日,正和生態(tài)知識(shí)庫(kù)完成測(cè)試并正式發(fā)布。這一成果標(biāo)志著公司在生態(tài)環(huán)境領(lǐng)域智能化轉(zhuǎn)型中邁出關(guān)鍵一步。該知識(shí)庫(kù)的核心系統(tǒng)“AI大模型助手”,深度融合正和生態(tài)28年行業(yè)經(jīng)驗(yàn)、智譜GLM大模型基座,整合智譜Z1與Deepseek R1雙AI模型,構(gòu)建起覆蓋招投標(biāo)、規(guī)劃設(shè)計(jì)、工程建設(shè)和內(nèi)控管理全鏈條的智能交互中樞,可實(shí)現(xiàn)信息秒級(jí)檢索與智能精準(zhǔn)推送,為企業(yè)高效運(yùn)轉(zhuǎn)、智能化決策以及創(chuàng)新能力提供強(qiáng)大支撐,為企業(yè)市場(chǎng)拓展和服務(wù)客戶提供有力支持。

正和生態(tài)AI大模型助手
01 構(gòu)建行業(yè)領(lǐng)先知識(shí)庫(kù),打造清晰知識(shí)架構(gòu)
1.1 海量資源整合,奠定知識(shí)基石
生態(tài)修復(fù)行業(yè)涉及面廣,包括生態(tài)保護(hù)與修復(fù)、流域(河道)治理、海岸帶保護(hù)與修復(fù)、生態(tài)景觀等多個(gè)領(lǐng)域,每個(gè)領(lǐng)域都有大量的技術(shù)、案例和政策法規(guī)。為了構(gòu)建全面、豐富的知識(shí)庫(kù),我們投入了巨大的工作量。目前,知識(shí)庫(kù)已收錄公司自有招投標(biāo)條目439項(xiàng)、規(guī)劃設(shè)計(jì)條目519項(xiàng)、工程建設(shè)條目161項(xiàng)、內(nèi)控管理74項(xiàng)以及行業(yè)規(guī)范500余項(xiàng),累計(jì)整理項(xiàng)目文件1萬(wàn)余份。

知識(shí)庫(kù)收錄了海量正和生態(tài)自有項(xiàng)目資料
1.2 科學(xué)分類體系,精準(zhǔn)RAG策略
首先是基于業(yè)務(wù)場(chǎng)景,規(guī)劃知識(shí)庫(kù)的頂層架構(gòu),明確招投標(biāo)、規(guī)劃設(shè)計(jì)、工程建設(shè)及內(nèi)控管理等關(guān)鍵模塊,確保知識(shí)體系能夠緊密貼合公司的實(shí)際業(yè)務(wù)需求;其次是層次化細(xì)分模塊,構(gòu)建樹(shù)狀分類結(jié)構(gòu),使知識(shí)類別清晰明了。例如,在工程建設(shè)模塊中,依據(jù)業(yè)務(wù)場(chǎng)景對(duì)L1主業(yè)務(wù)(生態(tài)環(huán)境)、L2子業(yè)務(wù)(生態(tài)工程、生態(tài)運(yùn)維)和L3業(yè)務(wù)產(chǎn)品(河流生態(tài)修復(fù)、城市棕地修復(fù)、近岸海域生態(tài)系統(tǒng)修復(fù)、海堤生態(tài)化改造、生態(tài)森林等)進(jìn)行細(xì)分,并按照一定的邏輯關(guān)系進(jìn)行組織,為后期數(shù)據(jù)向量化處理奠定基礎(chǔ);最后將實(shí)際知識(shí)資源,如文檔、數(shù)據(jù)表格、研發(fā)實(shí)驗(yàn)數(shù)據(jù)等,按照上述分類架構(gòu)進(jìn)行整理,對(duì)應(yīng)創(chuàng)建子文件夾,實(shí)現(xiàn)知識(shí)有序存儲(chǔ),以便提升知識(shí)復(fù)用與管理效率。
1.3 先進(jìn)技術(shù)路徑,構(gòu)建知識(shí)治理智能閉環(huán)
從各業(yè)務(wù)領(lǐng)域收集的相關(guān)數(shù)據(jù),對(duì)其進(jìn)行篩選、整理和清洗,確保數(shù)據(jù)的質(zhì)量和準(zhǔn)確性。運(yùn)用高維向量技術(shù)對(duì)數(shù)據(jù)進(jìn)行處理,將非結(jié)構(gòu)化的知識(shí)轉(zhuǎn)化為計(jì)算機(jī)能夠理解和處理的向量形式。同時(shí),搭建助手工作流,開(kāi)展提示詞工程,優(yōu)化輸入輸出,使模型能夠更好地理解用戶的問(wèn)題和需求,并通過(guò)調(diào)優(yōu)Temperature、top-p等模型參數(shù),以適應(yīng)不同的業(yè)務(wù)場(chǎng)景和問(wèn)題類型,提高模型的生成能力和準(zhǔn)確性。



知識(shí)庫(kù)搭建技術(shù)路徑
02 科學(xué)評(píng)測(cè)體系:三大維度200項(xiàng)精準(zhǔn)驗(yàn)證,源于業(yè)務(wù)、歸于場(chǎng)景
2.1 植根于四大業(yè)務(wù)板塊的核心工作流與痛點(diǎn)
技術(shù)團(tuán)隊(duì)前期深入業(yè)務(wù)一線,通過(guò)訪談、問(wèn)卷、實(shí)際工作分析等方式,系統(tǒng)性梳理了各板塊在知識(shí)檢索與應(yīng)用方面的差異性需求。規(guī)劃設(shè)計(jì)、工程建設(shè)強(qiáng)調(diào)方案的啟發(fā)性與創(chuàng)新性;招投標(biāo)、內(nèi)控管理則要求答案的精準(zhǔn)性與規(guī)范性,容錯(cuò)率極低。
2.2 場(chǎng)景化能力驗(yàn)證框架
為全面衡量Z1+知識(shí)庫(kù)是否具備解決實(shí)際問(wèn)題的“場(chǎng)景化智能”,團(tuán)隊(duì)構(gòu)建了“雙層測(cè)試框架”。
第一層:測(cè)試類型分層(共200題)——聚焦知識(shí)運(yùn)用形態(tài)
· 事實(shí)查詢類(80條):專門(mén)考察知識(shí)庫(kù)對(duì)精確信息(如制度原文、日期、標(biāo)準(zhǔn)等)的定位與復(fù)現(xiàn)能力。問(wèn)題設(shè)計(jì)覆蓋招標(biāo)文件細(xì)則、各類合同范本關(guān)鍵條款、公司最新內(nèi)控政策條文等,確?!坝袚?jù)可依”的場(chǎng)景需求被充分覆蓋。
· 專業(yè)查詢類(120條):重點(diǎn)驗(yàn)證知識(shí)庫(kù)對(duì)專業(yè)知識(shí)(如復(fù)雜設(shè)計(jì)規(guī)范、施工工藝要點(diǎn)、質(zhì)量驗(yàn)收標(biāo)準(zhǔn))的理解、解釋、綜合與應(yīng)用能力。問(wèn)題設(shè)計(jì)覆蓋生態(tài)設(shè)計(jì)原理、特殊工程驗(yàn)收程序、合規(guī)風(fēng)險(xiǎn)點(diǎn)解析等,針對(duì)需要“深入理解”和“策略建議”的專業(yè)場(chǎng)景。
第二層:評(píng)估指標(biāo)量化——聚焦知識(shí)品質(zhì)
· 知識(shí)覆蓋性:衡量在超過(guò)500份專業(yè)文檔構(gòu)成的企業(yè)知識(shí)庫(kù)中,準(zhǔn)確關(guān)聯(lián)并提取相關(guān)信息的能力(目標(biāo):無(wú)知識(shí)盲區(qū))。
· 事實(shí)一致性:嚴(yán)格比對(duì)知識(shí)庫(kù)輸出與原始權(quán)威資料(文檔庫(kù))間的誤差,設(shè)定企業(yè)級(jí)嚴(yán)苛標(biāo)準(zhǔn):誤差率需<1.2%(追求“零差錯(cuò)”)。
· 表達(dá)邏輯合理性:評(píng)估答案是否符合特定業(yè)務(wù)場(chǎng)景的專業(yè)語(yǔ)匯與邏輯表達(dá),確??勺x性、專業(yè)性、邏輯性達(dá)標(biāo)(匹配度達(dá)96%)。
· 設(shè)立“對(duì)照組”:為具象化展現(xiàn)Z1+知識(shí)庫(kù)相較于基礎(chǔ)大模型(Z1)在“企業(yè)知識(shí)增強(qiáng)”后的顯著提升價(jià)值,精心設(shè)計(jì)了對(duì)照組測(cè)試。所有200項(xiàng)測(cè)試問(wèn)題均要求Z1基礎(chǔ)模型(未接入企業(yè)知識(shí)庫(kù))與Z1+知識(shí)庫(kù)同步作答,結(jié)果橫向?qū)Ρ惹逦沂玖酥R(shí)庫(kù)在特定企業(yè)知識(shí)場(chǎng)景下的“升級(jí)躍遷”。

招投標(biāo)測(cè)試集

規(guī)劃設(shè)計(jì)測(cè)試集

工程建設(shè)測(cè)試集

內(nèi)控管理測(cè)試集
2.3 業(yè)務(wù)導(dǎo)向的動(dòng)態(tài)智慧引擎:按需調(diào)參,智能適配
差異需求量化與策略制定:基于前期對(duì)各板塊需求的深刻洞察,技術(shù)團(tuán)隊(duì)創(chuàng)新性地將大模型的“Temperature”參數(shù)作為核心調(diào)節(jié)杠桿。經(jīng)過(guò)預(yù)測(cè)試分析與模型行為研究,精確設(shè)定了差異化的參數(shù)調(diào)節(jié)方案:
· 規(guī)劃設(shè)計(jì)/工程建設(shè)板塊:Temperature ↑30%。經(jīng)反復(fù)測(cè)試驗(yàn)證,此提升能有效激發(fā)模型在保證基礎(chǔ)準(zhǔn)確的前提下,生成具有多樣性和前瞻性的方案建議(如技術(shù)路線、替代工法、風(fēng)險(xiǎn)預(yù)案等)。
· 招投標(biāo)/內(nèi)控管理板塊:Temperature ↓40%。通過(guò)大量穩(wěn)定性測(cè)試確認(rèn),此降幅可最大化抑制隨機(jī)性,確?;卮鸶叨染劢褂诜ㄒ?guī)條款原文及唯一解,實(shí)現(xiàn)“章可循、條可依”的要求。
實(shí)測(cè)案例驗(yàn)證效果:
· 生態(tài)工法方案查詢:規(guī)劃設(shè)計(jì)場(chǎng)景下,Z1+知識(shí)庫(kù)不僅給出標(biāo)準(zhǔn)方案,更延伸推薦了2-3種新型生態(tài)工法及適用條件。

規(guī)劃設(shè)計(jì)場(chǎng)景問(wèn)答測(cè)試

Z1+知識(shí)庫(kù)答案

Z1答案
· 內(nèi)部管理?xiàng)l款查詢:內(nèi)控管理場(chǎng)景下,答案精確至管理制度文件第X章第Y條第Z款,定位誤差率為0。

內(nèi)控管理場(chǎng)景問(wèn)答測(cè)試

Z1+知識(shí)庫(kù)答案

Z1答案
2.4 全景化驗(yàn)收:三重維度深度驗(yàn)證
為確保驗(yàn)收結(jié)果的專業(yè)性與全面性,公司組建了由業(yè)務(wù)骨干及信息專家等21名核心成員構(gòu)成的驗(yàn)收組,采用嚴(yán)謹(jǐn)?shù)陌俜种圃u(píng)估法,結(jié)合具體場(chǎng)景要求,對(duì)Z1+知識(shí)庫(kù)和Z1進(jìn)行分別打分,確保評(píng)估結(jié)果客觀可量化。

驗(yàn)收組對(duì)Z1+知識(shí)庫(kù)和Z1分別打分
2.4.1 知識(shí)準(zhǔn)確性(平均分91/100):
· Z1+知識(shí)庫(kù)表現(xiàn):知識(shí)覆蓋性,文檔定位率99%,事實(shí)一致性誤差率<1.2%,場(chǎng)景匹配度96%。整體得分91。
· Z1表現(xiàn):知識(shí)覆蓋性,誤差率28.5%,泛化表述占74%。整體得分74。
2.4.2 功能完備性(平均分92/100):
· 多輪對(duì)話保持率:驗(yàn)收組進(jìn)行高強(qiáng)度的連續(xù)追問(wèn)(如連續(xù)10輪),嚴(yán)格測(cè)試對(duì)話歷史記憶、意圖理解與上下文邏輯連貫性,證明其具備實(shí)用級(jí)的多輪交互能力。
2.4.3 交互體驗(yàn)(平均分85/100):
· 響應(yīng)速度:批量執(zhí)行高并發(fā)查詢,實(shí)測(cè)結(jié)果顯示98%的查詢能在2秒內(nèi)返回結(jié)果,滿足高效辦公需求。
· 動(dòng)態(tài)更新能力:為驗(yàn)證知識(shí)庫(kù)的實(shí)時(shí)更新與即時(shí)生效能力,驗(yàn)收組在現(xiàn)場(chǎng)將最新的內(nèi)部管理文件《財(cái)務(wù)發(fā)票管理手冊(cè)》直接導(dǎo)入知識(shí)庫(kù)系統(tǒng),隨即抽取手冊(cè)中修訂的關(guān)鍵條款進(jìn)行即時(shí)檢索測(cè)試,檢索準(zhǔn)確率達(dá)到100%。






驗(yàn)收評(píng)分
03 多方評(píng)價(jià):知識(shí)庫(kù)助力企業(yè)發(fā)展
規(guī)劃設(shè)計(jì)部門(mén)的同事表示,知識(shí)庫(kù)為他們提供了豐富的設(shè)計(jì)資源和靈感。設(shè)計(jì)師靳桂龍說(shuō):"以前做項(xiàng)目時(shí),需要花費(fèi)大量時(shí)間查閱資料、尋找案例,現(xiàn)在則能夠快速找到相關(guān)的設(shè)計(jì)方案和技術(shù)資料,并通過(guò)人機(jī)交互,對(duì)項(xiàng)目有了很大的啟發(fā)性與創(chuàng)新性,大大縮短了設(shè)計(jì)周期。知識(shí)庫(kù)可以實(shí)時(shí)了解最新研究成果和行業(yè)動(dòng)態(tài),不斷提升設(shè)計(jì)的前瞻性。"
項(xiàng)目管理中心總工程師田磊對(duì)知識(shí)庫(kù)贊不絕口:"在工程施工過(guò)程中,AI大模型助手就像一位經(jīng)驗(yàn)豐富的老師傅,隨時(shí)為我們提供技術(shù)支持和解決方案。遇到施工難題時(shí),只需在知識(shí)庫(kù)中搜索相關(guān)關(guān)鍵詞,就能找到類似的案例和解決方法,避免了重復(fù)試錯(cuò),提高了施工效率和質(zhì)量。同時(shí),知識(shí)庫(kù)中的安全管理知識(shí),也讓我們的施工更加規(guī)范、安全。"
招投標(biāo)部門(mén)的負(fù)責(zé)人譚燕云認(rèn)為:"知識(shí)庫(kù)中的招投標(biāo)案例和策略為我們制定投標(biāo)方案提供了重要參考,讓我們能夠更好地理解招標(biāo)文件要求,突出公司的優(yōu)勢(shì)和特色。"
內(nèi)控管理部門(mén)負(fù)責(zé)人田穎表示,知識(shí)庫(kù)在內(nèi)控管理工作中發(fā)揮了重要作用。"知識(shí)庫(kù)將公司的各項(xiàng)制度和流程進(jìn)行了系統(tǒng)化整理,方便員工查詢和學(xué)習(xí),提高了制度的執(zhí)行效率,為企業(yè)的合規(guī)經(jīng)營(yíng)提供了有力保障。"
企業(yè)知識(shí)庫(kù)的搭建是一項(xiàng)持續(xù)的任務(wù),需要持續(xù)投入和不斷完善。實(shí)踐證明,知識(shí)庫(kù)不僅提升了企業(yè)的知識(shí)管理能力和創(chuàng)新能力,還為各業(yè)務(wù)板塊提供了有力的支持,增強(qiáng)了企業(yè)的核心競(jìng)爭(zhēng)力。未來(lái),我們將繼續(xù)優(yōu)化知識(shí)庫(kù)的內(nèi)容和功能,使其更好地服務(wù)于企業(yè)的發(fā)展,為生態(tài)修復(fù)行業(yè)的進(jìn)步做出更大的貢獻(xiàn)。
國(guó)家重點(diǎn)研發(fā)計(jì)劃引領(lǐng),正和生態(tài)“人工智能”解鎖近岸海域治理新范式
正和生態(tài):聚焦主業(yè)謀發(fā)展 迎接挑戰(zhàn)啟新程
喜訊丨創(chuàng)新引領(lǐng),科技賦能,正和生態(tài)榮獲北京市“專精特新”企業(yè)認(rèn)定
正和生態(tài)“生態(tài)海堤模塊化系統(tǒng)”專利獲授權(quán),技術(shù)創(chuàng)新賦能海洋經(jīng)濟(jì)高質(zhì)量發(fā)展
正和生態(tài)攜AI成果亮相2025服貿(mào)會(huì),深度布局河湖海洋大模型與水務(wù)文旅智能機(jī)器人
正和生態(tài)發(fā)布國(guó)內(nèi)首個(gè)海洋生態(tài)修復(fù)基礎(chǔ)大模型“ShorelineGLM”,解碼海洋可持續(xù)發(fā)展新圖景
正和生態(tài)莆田藍(lán)色海灣項(xiàng)目入選全國(guó)海洋生態(tài)保護(hù)修復(fù)典型案例
2025-05-27